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Background -1
chronology

Neptune and Triton are closest to Kuiper Belt, which may hold clues to extra-
terrestrial origin of life.

Would like to insert an orbiter around Neptune that crosses the orbit of Triton.
Several NASA proposals to explore Neptune and Triton.

Minimum-energy trajectory takes too long. Fast mission using swing-by
needed.

Triton rotates retrograde. Results in 30 km/s entry speed. Aero-capture is
needed.

Neptune’s atmosphere: 81%H,, 18.5%He, 1.5%CH,.

Hollis et al (2004) examined the heating rates, predicted q.,,,~4 kW/cm?,
Q,.q=1 KW/cm?(part of q,,4 converted to q.,,)



Background - 2
Scientific issues

lonization rate of H will affect radiation. lonization rate of H is dictated mostly by the
birth of the first electrons by H+H collisions. The birth of first electrons is influenced by
absorption of Lyman-a radiation.

lonization rate in H+He mixture was measured by Leibowitz (1973) and Livingston and
Poon (1976) in a shock tube, from which the H+H ionization cross section can be
determined. There is a factor of 4 difference in rates between the two results.

Bogdanoff and Park (2002) tried to reproduce the earlier data in a shock tube, and failed.

Park (2010) analyzed Livingston-Poon data, accounting for Lyman-a absorption, and
developed a new reaction model for H+He mixture (H+H and H+He ionization).

H, dissociation and vibrational-rotational excitation problem solved by Kim et al(2009).

Shock tube experiment of Hyun et al(2009) shows that H hitting carbon surface does not
produce CH.

Present work applies these new model to calculate the stagnation-point radiative heat
flux at the edge of boundary layer. (The edge value is the controlling value.)



Equilibration distance, cm

Review of Park’s new H+He ionization model (2010)
based on Livingston and Poon’s shock tube data

Reproduces the equilibrium distances and peak electron densities in H+He mixture
obtained by Livingston and Poon (1976) in a shock tube. (agreement imperfect)

Note that the peak electron density is higher than the Rankine-Hugoniot
equilibrium value.
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Reason for discrepancy between Leibowitz (1973)
and Livingston and Poon (1976) is explained

*The irradiation from driver gas in Leibowitz’s experiment caused four times

faster ionization.
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Radiation spectrum

Significant contribution for H, B-X and C-X in vacuum ultra-violet.

Intensity, W/(cm?-un-sr)
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Application to Neptune Entry
assuming a 1-D constant area channel flow of 1 cm long

Radiative heat transfer rate is about 1.6 times higher than the values obtained by Hollis
et al (2002). Heat load is 1/5 of that to Galileo Probe.
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Concluding Remarks

A new ionization model was developed for H+He mixture.
The model leads to radiative heat transfer rates higher than those by earlier model.
The role of methane (carbon) on radiation needs to be investigated.

Shock tube experiment with H+He+CH, mixture is desirable, but how to do is not
known.

CFD needs to be done. Calculation of Lyman-a absorption will be a challenge.

Overall aerothermodynamics of Neptune entry is very difficult, primarily because of
lack of experiment.



